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Abstract Mathematics proficiency involves several content domains and processes at dif-

ferent levels. This essentially means that mathematics ability is a complex latent variable. In

standardised testing, the complex, and unobserved, latent constructs underlying a test are tra-

ditionally appraised by expert panels through subjective measures. In the present research, we

deal with the issue of dimensionality of the latent structure behind a test measuring the math-

ematics ability of Italian students from a statistical and objective point of view, within an IRT

framework. The data refer to a national standardised test developed and collected by the Italian

National Institute for the Evaluation of the Education System (INVALSI), and administered to

lower secondary school students (grade 8). The model we apply is based on a class of multi-

dimensional latent class IRT models, which allows us to ascertain the test dimensionality based

on an explorative approach, and by concurrently accounting for non-constant item discrimi-

nation and a discrete latent variable formulation. Our results show that the latent abilities

underlying the INVALSI test mirror the assessment objectives defined at the national level for

the mathematics curriculum. We recommend the use of the proposed extended IRT models in

the practice of test construction, primarily—but not exclusively—in the educational field, to

support the meaningfulness of the inferences made from test scores about students’ abilities.

Keywords Standardised national students’ tests � INVALSI tests � Mathematics ability �
Multidimensional latent class IRT models � Hierarchical clustering

1 Introduction

Students’ standardised tests are meant to measure complex latent abilities. Mathematical

ability and, within it, mathematical problem solving, are examples of such multifaceted

unobservable entities. These attributes are referred alternatively to as latent traits, latent
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variables, latent constructs, as there is no means to directly measure them. In the field of

mathematics education, some recent developments (Bartolini Bussi et al. 1999; Douek

2006; Schoenfeld 1992) identify in understanding, problem solving, and reasoning the

three main complex constructs involved in mathematics ability. Understanding includes

the ability to understand and use mathematical notions (and their semiotic representations

and properties), operations, and the relationships among them. Problem solving implies the

ability to deal with a problem, identifying or developing appropriate analyses in relation to

the posed problem. Reasoning refers to the ability to verify the validity of an assertion or

procedure in relation to the given context, also providing an explanation of one’s choice.

The assurance that the inferences made from standardised test scores about students’

abilities are appropriate for the stated purposes of the test is critical to test validity. In other

terms, the key to obtaining valid results from large national surveys is having access to

standardised tests which are fit for the intended educational purposes, usually defined at the

national level. Thus, test items should align with the requirements of the national frame-

work and cover a wide range of competencies to give students fair opportunity to

demonstrate their abilities (Tout and Spithill 2014). National curriculum documents and

other legislative texts on expectations for students’ learning are the foundations for stan-

dardised test content design and specification to measure students’ achievement. They

serve to communicate to the whole education community (i.e., educators, students, and the

public) what is being valued and what students are expected to know and do within a

content area and a process at specific points during their formal education (Webb 2006).

This is also the case of Italy, where the national Quadro di Riferimento, together with the

Indicazioni nazionali per il curricolo della scuola dell’infanzia e del primo ciclo di

istruzione (INVALSI 2012a, b) define the national assessment objectives and the content

domains of standardised assessment instruments developed by the National Institute for the

Evaluation of the Education System (INVALSI). Such national objectives specifically refer

to the three main complex constructs stated above (understanding, problem solving, and

reasoning), and are used as a frame of reference for the INVALSI test development.

Typically, during test development, expert panels express judgments about the rele-

vance of the test content domains, the adequacy of the test specifications and the repre-

sentativeness of the tasks, given the national framework (Kane 2006). A central matter in

such a test validation phase is a focus on the abilities covered by the test and their item

specifications, which should mirror the stated educational purposes. These abilities are, as

previously stated, latent variables, that is, unobservable attributes not directly measurable

and appraised by the experts through performances on specific tasks included in stan-

dardised tests.

The traditional validation model is liable to a number of criticisms. First, the assurance

that the inferences derived from test scores about students’ latent abilities are appropriate

for the stated purposes of the test is based on experts judgment and, as a consequence, it

lacks in objectivity. Second, validity evidence cannot justify conclusions about the inter-

pretation of test scores because it does not involve test scores (Messick 1989; Kane 2006).

According to this last key objection, in the traditional approach, validity evidence can play

a limited role because it does not provide direct evidence for inferences to be made from

test scores.

The aim of this article is to show the utility of the use of multidimensional extensions of

IRT models in supporting the validation process of students’ standardised tests, by over-

taking the typical weaknesses of traditional validity evidence tasks. In fact, as it will be

shown in the following, extended IRT models can be used to help identifying latent

abilities through objective measures which, also, directly use test scores. Such objective

1168 M. Gnaldi

123



www.manaraa.com

measures produce a clustering of the items of a test, in such a way that the items in the

same group are referred to the same ability or latent trait. Besides, as scores are expressed

relative to the identified latent abilities, they spread light on students’ weaknesses and

strengths in relation to these last complex constructs, in this way providing a much reacher

information on students’ achievement than do single scores on test items. Overall, the

outcome of the dimensionality analysis allows us to verify if, and to what extent, the test

meets the educational objectives stated at the national level in the relevant content

domains.

Specifically, the data we use in this work refer to a national standardised test in

mathematics developed and collected by the INVALSI. The INVALSI mathematics test

was administered in June 2014 to a national sample of 25348 lower secondary school

Italian students (Grade 8). The model we apply is based on a class of multidimensional

latent class IRT models, which allows us to test dimensionality by concurrently accounting

for non-constant item discrimination (Birnbaum 1968) and a discrete latent variable for-

mulation (Bartolucci 2007; Bartolucci et al. 2014; Gnaldi et al. 2015).

The remainder of this paper is organized as follows. The methodological approaches

employed to investigate the latent dimensionality of a test are described in the next sec-

tion. In Sect. 3, we recall the basics for the model adopted in our study (Bartolucci 2007)

and in Sect. 3.1, we describe the clustering algorithm which allows us to cluster items in

groups referred to the same latent ability. We describe the data in Sect. 4 and illustrate the

main results obtained by applying the proposed approach to the INVALSI data in Sect. 5.

Section 6 draws the main conclusions of the study.

2 Statistical approaches for dimensionality assessment of students’
standardised tests

Students’ standardised tests are intended at measuring latent constructs or content domains.

These attributes are referred to as latent traits as there is no means to directly measure

them, so that the degree to which a certain latent ability characterizes a student can be

merely inferred from overt behaviors, which represent the construct observable manifes-

tation (Bartolucci et al. 2015). In turn, observed behaviors can be seen only as proxies of

the associated latent construct (i.e., the responses to the items of a mathematics test can be

considered as proxies of the ability under study). Unlike constructs, observable proxies

only reflect specific aspects of the construct and, as such, they are not their perfect mea-

sures (Raykov and Marcoulides 2011). Another way of thinking about students’ abilities is

as latent dimensions along which students are positioned and differ one another. As latent

dimensions are not directly observable and measurable, students’ exact location on the

latent traits are not known, and therefore, they are not precisely identified.

When a test measures only a latent ability it is referred to as unidimensional. However,

students’ standardised tests are often composed by subsets of items measuring different

constructs. Tests of the latest type are referred to as multidimensional. The dimensionality

assessment of students’ standardised tests essentially aims at identifying the number and

kind of abilities covered by a test.

The literature has proposed various approaches to evaluate the dimensionality of test

items. Item factor analysis (Wirth and Edwards 2007), among parametric approaches,

generalizes traditional factor analysis, based on continuous observed responses, to discrete

observed responses.
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The most known and broadly used form of confirmatory factor analysis is the bi-factor

analysis, introduced by Holzinger and Swineford (1937). In bi-factor analysis, the first

factor is called general factor and may be seen as the overall latent ability assessed by the

test (i.e., the mathematical ability). The remaining factors are called group factors and may

be viewed as more specific sub-components of the overall ability assessed by the test

(Golay and Lecerf 2011).

The traditional bi-factor analysis has a confirmative nature. Therefore, to apply it, a

specific bi-factor structure has to be specified in advance. Such a specification may be

difficult to find in practice, and this happens whenever one does not have prior information

on the structure of dimensionality of a test. To try to overcome this limitation, Jennrich and

Bentler (2011) introduced recently a new method which, however, has not been followed

by widespread applications yet, at least to our knowledge. The model is essentially a form

of exploratory bi-factor analysis, designed to give a rotated loading matrix with an

approximate bi-factor structure. The same authors suggest a possible extension of this

procedure, which uses an orthogonal rotation, to account for more general rotation methods

(i.e., oblique rotation) so that group factors are allowed to depend one another (Jennrich

and Bentler 2012).

Finally, for possible generalization of bi-factor analysis in the context of multidimen-

sional item response theory, we refer the reader to Cai and Hansen (2011). As known,

traditional IRT models assume that the associations between the responses of a student are

fully accounted for by only one latent trait which, in the educational setting, is the students’

ability. The characterization of the latent person space in terms of a single unidimensional

ability implies that all items of a test are located on the same scale, contributing to measure

a single latent trait (Bartolucci et al. 2015). However, students’ assessment tests are often

composed by subsets of items measuring different but potentially related constructs or

content domains. In such later contexts, the traditional IRT assumption of only one

underlying latent variable is inappropriate and restrictive for the data at issue. In fact, the

unidimensional approach ignores the differential information on students’ ability levels

relative to several latent traits, which are confused in the same measurement (Camilli 1992;

Embretson 1991; Luecht and Miller 1992).

In the IRT framework, a consecutive approach (Briggs and Wilson 2003) is commonly

adopted to assess dimensionality, which consists of modeling each latent trait indepen-

dently of the others, formulating a specific unidimensional IRT model for each ability. This

approach has the advantage of providing person ability estimates and standard errors for

each latent variable; however, the possibility that these latent variables are related is

ignored. On the other hand, this aspect is accounted for in multidimensional IRT

approaches, which enclose the correlation between the latent variables. In fact, in a mul-

tidimensional IRT model, each latent trait is assumed to have a direct influence on the

responses to a certain subset of items and also an indirect influence on the responses to

other items. Hence, the main advantage of using the multidimensional approach is that the

structure of the test is explicitly taken into account, so that estimates for the correlation

between the latent traits are provided and more accurate parameter estimates are obtained.

The hypothesis of unidimensionality has been tested extensively in the literature,

especially in relation to the Rasch model, (Rasch 1961; Glas and Verhelst 1995; Vermunt

2001). Martin-Löf (1973), for example, proposed to test the hypothesis that the Rasch

model holds for the whole set of items against the hypothesis that this model holds for two

disjoint subsets of items defined in advance. The method has two main limitations, that is,

it assumes constant item discrimination and has a confirmative cut. Therefore, whenever

the discrimination power of test items is not constant, as it is the case of many standardised
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test items—such as the INVALSI items at issue, see for instance Gnaldi et al. (2015)—and

the structure of dimensionality of a test is not known a priori, the approach cannot be

appropriately applied in practice.

To overcome these limitations, Bartolucci (2007) proposed a semi-parametric approach

based on a class of multidimensional latent class (LC) IRT models. As it will be further

described in the following section, such approach takes into account multidimensional

latent traits (Reckase 2009) and more general item parameterisations than those of Rasch-

type models (Rasch 1961), that is, the two-parameter logistic (2PL) model introduced by

Birnbaum (1968). Moreover, the model at issue represents abilities by a random vector

with a discrete distribution common to all subjects. Representing the ability distribution

through a discrete latent variable is more flexible than representing it by means of a

continuous distribution, as it allows to classify individuals in homogeneous classes having

very similar latent characteristics.

Among non parametric approaches developed in the IRT framework, we remind the

Mokken Scale analysis (Mokken 1971; Sijtsma and Molenaar 2002) and the Detect method

(Stout 1987; Zhang and Stout 1999a, b). Both are based on the computation of the

covariance between pairs of items to obtain a synthetic indication of the multidimen-

sionality of a set of items, distinguishing one another for the type of covariance: uncon-

ditional in the former case and conditional to the latent variables vector in the latter case.

Finally, for multidimensional IRT models applied to the Italian context we refer the reader

to Matteucci and Mignani (2015).

3 The multidimensional LC IRT model

The class of multidimensional LC-IRT models developed by Bartolucci (2007), and

applied in this paper, presents two main differences with respect to classic IRT models:

(i) the latent structure is multidimensional and (ii) it is based on latent variables that have a

discrete distribution, meaning that the population under study is made up by a finite

number of classes, with subjects in the same class having the same ability level (Lazarsfeld

and Henry 1968; Formann 1995; Lindsay et al. 1991); see Bacci et al. (2014) for a more

general formulation for polytomously-scored items. In this paper, we consider in particular

the version of these models based on the two-parameter (2PL) logistic parameterisation of

the conditional response probabilities (Birnbaum 1968).

Let n denote the number of students in the sample and suppose that they answer r

dichotomous test items that measure s different latent traits or dimensions. Besides, let J d,

d ¼ 1; . . .; s, be the subset of J ¼ f1; . . .; rg containing the indices of the items measuring

the latent trait of type d and let rd denoting the cardinality of this subset, so that

r ¼
Ps

d¼1 rd . The subsets J d are disjoint as each item measures only a latent trait. On the

other hand, we assume that he latent traits may be correlated.

The 2PL parameterisation implies that

logit½pðYij ¼ 1 j Vi ¼ vÞ� ¼ cj
Xs

d¼1

djdn
ðVÞ
vd � bj

 !

; i ¼ 1; . . .; n; j ¼ 1; . . .; r: ð1Þ

where Yij is the response to item j provided by student i (Yij ¼ 0; 1 for wrong or right

response, respectively), bj is the difficulty level of item j and cj is its discriminating level.

Besides, Vi is a latent variable indicating the latent class of the subject, v is one of the

possible realisations of Vi, and djd is a dummy variable equal to 1 if index j belongs to J d
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(and then item j measures the dth latent trait) and to 0 otherwise. Finally, each random

variable Vi has a discrete distribution with support 1; . . .; kV corresponding to the kV latent

classes in the population.

Associated to subjects in latent class v there is a vector nðVÞv with elements nðVÞvd cor-

responding to the ability level of subjects in latent class v with respect to dimension d. Note

that, when cj ¼ 1 for all j, then the above 2PL parameterisation reduces to a multidi-

mensional Rasch parameterisation. At the same time, when the elements of each support

vector nðVÞv are obtained by the same linear transformation of the first element, the model is

indeed unidimensional even when s[ 1.

The assumption that the latent variables have a discrete distribution implies the fol-

lowing manifest distribution of the full response vector Yi ¼ ðYi1; . . .; YirÞ0:

pðyiÞ ¼ pðYi ¼ yiÞ ¼
Xk

v¼1

pvðyiÞpðVÞv ; ð2Þ

where yi ¼ ðyi1; . . .; yirÞ0 is a realisation of Yi, pðVÞv ¼ pðVi ¼ vÞ denotes the weight or a

priori probability of the vth latent class, with
P

v p
ðVÞ
v ¼ 1 and pðVÞv [ 0 for v ¼ 1; . . .; kV .

Moreover, the local independence assumption which characterises all IRT models, implies

that

pvðyiÞ ¼ pðYi ¼ yi j Vi ¼ vÞ ¼
Yr

j¼1

pðYij ¼ yij j Vi ¼ vÞ; v ¼ 1; . . .; kV :

3.1 Dimensionality assessment

The specification of the multidimensional LC-2PL model, based on the assumptions

illustrated above, univocally depends on: (i) the number of latent classes (kV ), (ii) the

number of latent dimensions (s), and (iii) the way items are associated to the different

latent dimensions. While latent classes refer to groups of units, latent dimensions refer to

groups of variables (i.e., items) in a dataset. As to the number of latent classes (kV ), they

can be chosen through a statistical approach—i.e., an information criterium such as the

Bayesian Information Criterion (BIC) or the Akaike information criterion (AIC)—or on the

basis of subjective choices based on specific objectives or previous research.

Once the number of latent classes k is chosen for the 2PL model expressed by Eq. (1),

the next step is the assessment of the dimensionality of the test. For this purpose, we test

the hypothesis that the r items of the questionnaire measure s� 1 instead of s dimensions:

the s� 1 dimensions are specified by collapsing two dimensions of the s initial ones into

one, and then grouping the corresponding items.

To cluster items into a reduced number of groups, we adopt a hierarchical algorithm

which allows us to group items measuring the same ability in the same cluster. The

algorithm builds a sequence of nested models. It starts with estimating the most general

model, that is, a multidimensional LC 2-PL IRT model with a different dimension for each

item—corresponding to the classic LC model—and ends with the most restrictive model,

that is, a model with only one common dimension to all items—corresponding to a uni-

dimensional LC 2-PL IRT model. At each step of the procedure, the algorithm estimates a

multidimensional LC 2-PL IRT model and reduces the dimensionality of the test of a

dimension, by collapsing two items in the same group (or two groups of items in the same
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group). Specifically, at each step, the following likelihood ratio (LR) test is performed for

every pair of possible aggregations of items (or groups of items):

LR ¼ 2
X

y

nðyÞ log
�
p̂ðyÞ
p̂0ðyÞ

�

; ð3Þ

where p̂ðyÞ and p̂0ðyÞ are the estimated probability of configuration y under the model with

s and s� 1 dimensions, respectively.

The LR test is thus used to compare models which differ only in terms of their

dimensional structure, all the rest keeping constant. This type of statistical test allows us to

evaluate the similarity between a general model and a restricted model, i.e., a model which

is obtained by the general one by imposing one constraint (i.e., so that the restricted model

is nested in the general one). More precisely, the LR test evaluates, at a given significance

level, the null hypothesis of equivalence between the two nested models at issue. If the null

hypothesis is not rejected, the restricted model is preferred, in the interest of parsimony. If

the null hypothesis is rejected, the general model is preferred. We remind that in our

framework, the most general model is the one with a dimension for each item, whereas the

most restricted model is used when all items belong to the same dimension.

The output of the above clustering algorithm may be displayed through a dendrogram

that shows the deviance between the initial (s-dimensional) LC model and the model

selected at each step of the clustering procedure. As known, the results of a cluster analysis

based on a hierarchical procedure, and the consequent choice of the number of dimensions

of a test, depend on the adopted rule to cut the dendrogram, which may be chosen

according to several criteria. Bartolucci (2007) proposed a criterion based on the LR test

statistic: the dendrogram is cut at the level corresponding to the first aggregation for which

the test leads to reject H0. However, such an approach can be misleading for large samples,

because it leads to overestimate the dimensionality of the latent structure. A more suit-

able rule which may be adopted for large samples, as ours, is based on a suitable infor-

mation criterion, such as the Bayesian Information Criterion (Schwarz 1978), defined by:

BIC ¼ �2‘̂þ ðlog nÞm;

where ‘̂ is the maximum of the log-likelihood for a given model, whose number of

parameters is equal to m, while n is the sample size. In particular, we select the model (then

the number of dimensions) for which the difference between its BIC and that of the LC

model becomes positive.

4 The data

The data we refer to in this work is a national standardised test of mathematics developed

and collected by INVALSI. The INVALSI mathematics test was administered in June 2014

to a national sample of 25,348 lower secondary school Italian students, at their grade 8. As

this is the step where Italian students end their first cycle of instruction, it is a very

important stage which laid the foundations for their higher cognitive processes. Our data is

derived from a sample of controlled classes, that is, classes where the administration of the

INVALSI test has been carried out by inspectors (and not by class teachers) and where,

therefore, cheating should be marginal.
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The Italian Quadro di Riferimento and the Indicazioni nazionali per il curricolo della

scuola dell’infanzia e del primo ciclo di istruzione (INVALSI 2012a, b) define the national

assessment objectives and the content topics of standardised assessment instruments

developed by the INVALSI. Such objectives and content topics are used as a beginning

point for test content identification. The Italian Quadro di Riferimento for mathematics

education of the first cycle of instruction is organized in two dimensions: the content

dimension, which defines the mathematics content topics test items should cover, and the

cognitive dimension, which relates to the processes students activate when answering each

test item.

The content dimension is articulated into four content domains: numbers (NU), shapes

and figures (SF), relations and functions (RF), and data and previsions (DP). The number

content domain consists of understanding, operating with, properties and representations of

natural numbers, whole numbers, fractions and decimals, proportions, and percentage

values and power and roots. The algebra domain requires students the ability to understand,

among others, patterns, expressions, and first-order equations, and to represent them

through words, tables, and graphs. It also includes classification and relationships between

mathematical objects; verbal, numeric, symbolic representations of mathematical objects.

The shapes and figures domain covers topics such as geometric shapes, measurement,

location, and movement, with an emphasis on the ability to represent figures through

graphical tools. The data and previsions domain includes three main topic areas: data

organization and representation (reading, organizing, and displaying data using tables and

graphs), data interpretation (identifying, calculating, and comparing characteristics of

datasets, including mean, median, mode), and chance (e.g., judging the chance of an

outcome, using data to estimate the chance of future outcomes).

The eight processes refer to the various components of mathematics competence and

specifically to:

1. Knowledge and mastery of specific mathematics contents (i.e., mathematics objects,

properties, structures)

2. Knowledge and use of simple algorithms and procedures (in the arithmetic, geometric,

algebraic, statistics and probabilistic fields) (INVALSI 2012a, b)

3. Knowledge of the different representation forms (verbal, numeric, symbolic,

graphical, etc.) and being able to move from one representation to another

4. Solving problems using various strategies in different fields

5. Recognising the measurable nature of objects and phenomena, using measurement

tools and quantities, estimating measuring quantities

6. Gradually acquiring typical forms of the mathematics reasoning (i.e., make

conjectures, discuss, verify, define, generalize) (INVALSI 2012a)

7. Using mathematical instruments, models and representations to deal with quantitative

information in the scientific, technologic, economic and social fields.

8. Recognising shapes and figures in a space e using them to solve geometric and

modeling problems.

The 50 items which compose the 2014 INVALSI mathematics test refer together to a

content dimension and a process dimension. Table 1 shows the classification of the items of

the 2014 INVALSI mathematics test according to the two dimensions. The content

dimension and the process dimension covered by each item of the test have to be seen more

as prevalent processes than as exclusive processes. In fact, because, in general, any answer

to each item involves several levels of knowledge and requires the mastery of several
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abilities, it is not possible to set a univocal correspondence between a single item and a

unique content (in terms of knowledge and ability).

The formats of the items of the 2014 INVALSI mathematics test include multiple

choice and open items. Multiple choice items are both simple multiple choice items with

one correct answer and three distractors, dichotomously scored (assigning 1 point to

correct answers and 0 otherwise) and multiple response (dichotomy) questions, where

students are presented with a number of options and are invited to tick or otherwise

indicate all those which apply. Open items include both items with univocal answers (i.e.,

correct answers can be rigidly specified a priori), which require to provide a result, or to

complete a table or figure, and open items with non-univocal answers, such as those

requiring students to describe a procedure or to justify an answer or choice. Overall, 16

items of the 2014 INVALSI mathematics test are of multiple choice type, 21 are multiple

response (dichotomy) items, 11 are univocal open-ended items and 2 are non-univocal

open items. For the purposes of the analysis described below, we used all the 50 items

composing the test, dichotomously re-scored by the INVALSI itself.

5 Application to the INVALSI dataset

In this section, we deal with the dimensionality assessment of the 2014 INVALSI math-

ematics test which allows us to identify the number and kind of complex abilities covered

by the test.

In analysing the INVALSI dataset by the model described in the Sections 3 and 3.1, a

key point is the choice of the number of latent classes. In education settings, the ability of

each student may be classified into one of several categories on the basis of cut scores. The

setting of cut scores on standardised tests is a composite judgmental process (Loomis and

Bourque 2001; Cizek et al. 2004) whose complexities and nuances are beyond the aim of

this article. For the purposes of the analysis described in the following, it is enough to

acknowledge that it is possible to select a different number of groups depending on the

adopted judgmental criteria. Here, we adopt a widespread classification of students into

three groups (i.e., basic, advanced, and proficient), corresponding to kV ¼ 3. Other less

subjective criteria for the selection of the number of classes are available, see for example

Bartolucci (2007), Bartolucci et al. (2014) and Gnaldi et al. (2015).

Table 1 Classification of the
items of the 2014 INVALSI
mathematics test according to the
process dimension and the con-
tent dimension involved (NU
numbers, SF shapes and figures,
RF relations and functions, DP
data and previsions)

Process Content Total

NU SF RF DP

1 2 0 0 1 3

2 1 6 1 1 9

3 2 0 0 0 2

4 2 1 1 3 7

5 2 1 0 6 9

6 0 0 0 1 1

7 0 0 14 0 14

8 0 5 0 0 5

Total 9 13 16 12 50
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The analysis of dimensionality of the 2014 INVALSI mathematics test is carried out

through two consecutive steps. In the first step, the clustering algorithm described in

Sect. 3.1 has been applied separately to the items which compose each of the four groups

defined by the experts on account of their content. Thus, we obtain a clustering of the items

which compose the NU (i.e., number) group, a clustering of the items which compose the

SP (i.e. shapes and figures) group, and so on. Afterwards, the clusters of items selected at

the first step are further clustered in the second step. Therefore, at the second step, the

procedure groups clusters of item. This two-steps clustering procedure is necessary as the

algorithm cannot be applied to a very high number of items (i.e., the 50 items which overall

compose the test).

The output of the clustering algorithm run at the first step is represented by the den-

drograms in Figs. 1, 2, 3, and 4, which are referred, respectively, to the numbers (i.e., NU),

shapes and figures (i.e., SF), relations and functions (i.e., RF), and data and previsions (i.e.,

DP) groups.

At this first step of the dimensionality assessment, and differently from step 2, the

selection of the number of clusters within each content group is carried out without relying

on statistical criteria (i.e., the BIC), as the aim of this first step is to reduce the number of

items (i.e., to a smaller number than the initial 50 items) in order to be able to run the

procedure in a reasonable time. Table 2 shows the distribution of items in the selected

clusters within each group content at Step 1. The cluster selection which results at this step

is a compromise between the need to reduce the number of items and the demand to retain

as much information as possible. Overall, 16 clusters are selected at this first step.

At the second step, the 16 clusters chosen at the first step are further clustered by

running the same procedure a second time. The dendrogram in Fig. 5 and Table 3 show the

details of the clusters formed at each step of the procedure.

In particular, Table 3 shows the clustered groups at each step, together with the

deviance with respect to the initial model, the degree of freedom, and the values of the

increase of BIC with respect to the initial model. Note that the number of steps of the

clustering algorithm depends on the number of items (or groups of items, as in our case)

minus one. Besides, note that, at each step, the procedure reduces the number of dimen-

sions of a dimension; that is, at the first step, the dimensions are reduced to 15 (from the

initial 16), by collapsing together the items in brackets (i.e. 9 and 14 ), and so on.
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Fig. 1 Step 1: dendrogram for the mathematics test—numbers (NU)
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Following the method outlined in Sect. 3.1, we adopt as a criterion to cut the dendro-

gram the one based on BIC. In particular, since BIC tends to select more parsimonious

models than other criteria (in particular with large sample sizes), we rely on the increase of

BIC with respect to the initial model (i.e., the model with one dimension for each item).

The results in Table 4 show that, with the adopted cut criterion and the chosen number

of latent classes, it is reasonable to assume that the test at issue is made up of s ¼ 2 groups

of items which identify two latent dimensions. The two groups are made of 20 and 30

items, corresponding to different complex latent constructs which may be synthetically

characterized as: (i) knowledge and use of mathematical algorithms and procedures and the

ability to solve problems; (ii) ability to use mathematical instruments, models and repre-

sentations to deal with quantitative information in the scientific, technologic, economic and

social fields.

The second complex latent construct appears especially typified by items in the data

and previsions content domain so that, overall, this dimension may be defined as the

students’ ability to verify and explain the degree of sensibleness of statements and pro-

cedures when faced with data representations (i.e., statistical tables and graphs), and
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Fig. 2 Step 1: dendrogram for
the mathematics test—shapes and
figures (SF)
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Fig. 3 Step 1: dendrogram for
the mathematics test—relations
and functions (RF)
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chance (e.g., judging the chance of an outcome, using data to estimate the chance of future

outcomes). Differently, the first dimension concerns primarily all the content areas but the

data and previsions one. Therefore, overall, the first complex construct identifies the ability

to use numeric, geometric, algebraic algorithms and procedures to solve real problems.

6 Discussion and conclusions

The primary intent of this article is to show the potentialities of extended IRT models in

supporting the process of construction and validation of students’ standardised tests carried

out by national agencies in charge of such tasks.
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Fig. 4 Step 1: dendrogram for
the mathematics test—data and
previsions (DP)

Table 2 Distribution of clusters
and items within each group
content selected at Step 1

Group content Cluster labels Items in cluster (original labels)

NU 10 D4 D6 D11

NU 11 D21 D26 D29 D25

NU 12 D12 D19

SF 13 D2a1 D20

SF 14 D2a2 D22 D14 D17c

SF 15 D2a3 D2b D7 D10

SF 16 D17a D17d D17b

RF 1 D3 D27 D13b D13a

RF 2 D9 D16 D15

RF 3 D18a D18b3 D18b4

RF 4 D18b1 D18b2

DP 5 D1 D28

DP 6 D24a D24b4 D24b5

DP 7 D24b1 D24b3 D24b2

DP 8 D5 D8b2 D8a D8b3 D8b5 D23

DP 9 D8b1 D8b4
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The data we use in this work refer to a national standardised test in mathematics

developed and collected by the Italian National Institute for the Evaluation of the Edu-

cation System (INVALSI). The test was administered in June 2014 to a national sample of

25348 lower secondary school Italian students. We choose to work with these data as this is

the stage where Italian students end their primary cycle of instruction, and where the

foundations for their higher cognitive processes are laid.

The model we apply is based on a class of multidimensional latent class IRT models

(Bartolucci 2007), which allows us to ascertain the test dimensionality based on an

explorative approach, and by concurrently accounting for non-constant item discrimination

and a discrete latent variable formulation. Relying on this model, we apply a clustering

algorithm which identifies clusters of complex and unobserved mathematical abilities

underlying the test, which we characterise as the ability to solve mathematical problems,

and as the ability to verify and explain the degree of sensibleness of statements and

procedures in the data and prevision content domain.

Further, our results can be used to assess the degree of correspondence between the

identified latent abilities and the mathematical constructs recognised at the national level as

key abilities in the subject. In this sense, we can state that the INVALSI mathematics test

adequately covers the three main mathematical abilities (i.e., understanding, problem

solving, and reasoning). In fact, the understanding and problem solving abilities are

summarized by the 20 items grouped in the first clustered dimension, and the reasoning

ability is reflected by the 30 items in the second dimension.

To our knowledge, there are no other attempts to use such extended IRT models in the

practice of test construction in the educational field. We recommend their use as they allow

national agencies to identify latent abilities through objective measures, providing in this

way a non-subjective evidence to support the meaningfulness of the inferences made from

test scores about students’ abilities. We believe that, without such objective measures, the

strength of any inferences made from a standardised test by the experts’ opinion is possibly

shrunk down by their lack of objectivity.

Fig. 5 Step 2: dendrogram for the overall mathematics test
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Finally, as the method and processes of validation are central to constructing and

evaluating not only performance tests in the educational field, but also other measures in

other scientific fields, we advocate the practice to rely on the presented class of extended

Table 3 Step 2: diagnostics for the hierarchical clustering algorithm for the mathematics test: number of
dimensions (n dim), aggregate groups, deviance with respect to initial model, degrees of freedom, increase
BIC with respect to initial model; in boldface is the first BIC positive value

n dim Aggregate groups Deviance wrt
initial model

df Increase BIC wrt
initial model

15 1,2,3,4,5,6,7,8,10,11,12,13,15,16 (9,14) 00,001 1 �101,403

14 1 3 4 5 6 7 8 10 11 12 13 15 (9,14) (2,16) 02,305 3 �301,909

13 1 3 4 7 8 10 11 12 13 15 (9,14) (2,16) (5, 6) 04,945 5 �502,078

12 1 3 4 7 8 11 12 15 (9,14) (2,16) (5,6) (10,13) 10,612 7 �699,220

11 1 3 4 7 8 11,12,15 (5,6) (10,13) (9,14, 2,16) 22,012 9 �890,629

10 1 3 4 7 11 12 (5,6) (10,13) (9,14,2,16) (8,15) 36,217 11 �1,079,233

9 1 4 7 11 12 (10,13) (9,14,2,16) (8,15) (5,6,3) 54,468 13 �1,263,791

8 4 7 11 12 (10,13) (9,14,2,16) (8,15) (5,6,3,1) 124,695 15 �1,396,373

7 4 7 12 (10,13) (8,15) (5,6,3,1) (9,14,2,16,11) 198,960 17 �1,524,917

6 4 7 12 (5,6,3,1) (9,14,2,16,11) (8,15,10,13) 335,482 19 �1,591,205

5 7 12 (5,6,3,1) (8,15,10,13) (9,14,2,16,11,4 ) 476,089 21 �1,653,407

4 12 ( 8,15,10,13) (4,9,14,2,16,11) (5,6,3,1,7) 677,852 23 �1,654,453

3 (8,15,10,13) (5,6,3,1,7) (4,9,14,2,16,11,12) 1,956,491 25 �5,78,622

2 (4,9,14,2,16,11,12) (5,6,3,1,7,8,15,10,13) 3,227,428 27 489,505

1 (5,6,3,1,7,8,15,10,13,4,9,14,2,16,11,12) 10,038,189 29 7,097,457

Table 4 Classification of the
items of the INVALSI mathe-
matics test into s ¼ 2 latent
dimensions

Cluster Items in cluster

Dimension 1

9 D8b1 D8b4

14 D2a2 D22 D14 D17c

2 D9 D16 D15

16 D17a D17d D17b

11 D21 D26 D29 D25

4 D18b1 D18b2

12 D12 D19

Dimension 2

1 D3 D27 D13b D13a

3 D18a D18b3 D18b4

5 D1 D28

6 D24a D24b4 D24b5

7 D24b1 D24b3 D24b2

8 D5 D8b2 D8a D8b3 D8b5 D23

15 D2a3 D2b D7 D10

10 D4 D6 D11

13 D2a1 D20
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IRT models also in the development and validation of measures in the social, health, and

human fields.
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